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Letters__________________________________________________________________________________________

Comments on “An Innovative Fast Powerful Method for
Tackling Electromagnetic Eigenvalue Problems

for Multistrip Transmission Lines”

Michal Mrozowski

In the above paper,1 Casanueva and García applied a technique de-
veloped in [1] to calculate dispersion characteristics of multistrip trans-
mission lines. Apart from the waveguiding structure used in numerical
tests and the method applied to calculate the basis (both being not es-
sential for the method introduced in [1]), the only departure from [1] is
the technique for solving the resulting eigenvalue problem. Casanueva
and García treat the problem as a system of homogeneous equations
and advocate solving it by using singular value decomposition (SVD)
combined with the search of minimum on the complex� plane. Un-
fortunately, this in fact is a much worse and less straightforward way
than that which was actually used to solve eigenvalue problems derived
in [1] and [3]. While I certainly appreciate and welcome the fact that
Casanueva and García recognized a large potential of the approach out-
lined in [1], as well as its simplicity and innovative character, it is felt
that an apparent misunderstanding as to the numerical treatment of the
resulting eigenvalue problem has to be clarified and I take this oppor-
tunity to spell out some details.

Let us recall a few basic facts from the guided wave theory [2]. Using
!, �, andu to denote the angular frequency, propagation factor, and
field, respectively, the wave-propagation problem in a lossless wave-
guide can be expressed in a form of an operator pencil

!
2
X! u+ !�X!�u+ !X!u+X0u = 0 (1)

where boldface font is used to represent operators derived from
Maxwell’s equations. For bidirectional media, the pencil reduces to

Lu+ !
2
u� �

2
Su = 0: (2)

Note that operators neither depend on�, nor!. This is why the only
one form of the matrix equation that can result when the method of mo-
ments is applied to the above equations (provided the basis and testing
functions do not depend on� and!) is

A 1 + !
2
A 2 � �

2
A 3 a = 0: (3)

With the method presented in [1], one gets a problem in the form
(see [1] or [3] for details and the definition of matrices involved)

G !
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I � 
 2 + S Z
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a� �

2
S a = 0 (4)

soA 1 = S Z 2
� G
 2, A 2 = G andA 3 = S.
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Obviously one can disregard the fact that the component matrices
do not depend on�2 and!2 and treat (3) as a system of homogeneous
equations with a coefficient matrix depending on!2 and�2, i.e.,

A 4 �
2
; !

2
a = 0: (5)

Written like that, it appears that the problem is soluble by finding roots
of a nonlinear equation resulting from the conditiondetA 4(�

2; !2) =
0. It has to be stressed that, although theoretically possible, this would
be the least efficient and exotic way of treating matrix problems of the
form of (3). Equally exotic is the approach to solving (3) suggested by
Casanueva and García, who advocate searching for the location of min-
imal value of the smallest singular value of the matrix on the complex
�-plane. While this may indeed bring about some advantages when
applied to the spectral-domain approach (SDA) (this is the method
Casanueva and García use for calculating the basis), where the oper-
ators (Green’s functions) depend nonlinearly on�2 and!2, it should
never be considered for solving (3). Equation (3) simply constitutes a
generalized matrix eigenvalue problem and dispersion characteristics
�2(!) and expansion coefficients for finding modal fields are deter-
mined in a straightforward manner by finding, for successive values of
!, eigenvalues and eigenvectors of the generalized matrix eigenvalue
problem (4) expressed as

A 5(!)a = �
2
S a: (6)

For this purpose, one of the standard numerical techniques, e.g., the
QZ algorithm [4], can be used. In theQZ algorithm, matrices in the
pencil (A 5; S) are first reduced to the upper Hessenberg and upper
triangular matrices via a series of orthogonal transformations. Next, the
generalized Schur decomposition is found by iteratively reducing the
subdiagonal entries of the upper Hessenberg matrix. Eigenvalues are
then calculated as the ratio of the elements situated on the diagonals
of the reduced matrix pencil. The eigenvector is computed via inverse
iteration. TheQZ algorithm is implemented in a variety of libraries,
as well as in commercial- and public-domain mathematical software.
For matrices of the sizeN � N , the numerical cost of the eigenvalue
solver is of the orderO(N3), and no zero finding or minima searching
is involved.

As matrices in pencil (6) are indefinite [2], theQZ algorithm may re-
sult in pairs of complex conjugate eigenvalues and, thus, it also directly
finds complex modes. To sum up, to compute dispersion characteris-
tics presented in [1] and [3], no homogeneous system of equations has
ever been solved. The propagation constants of propagating, evanes-
cent, and complex modes were found by applying either theQZ or
QR algorithm to various matrix eigenvalue problems that can be de-
rived form (4) by using a suitably selected basis (see [3] for a discussion
of specific bases).

As for the application of the SVD for a fast solution of guided wave-
propagation problems, the only sensible application of this technique
I see in the context of the method developed in [1], is the generation
of orthogonal bases. If the fields selected for expansion are taken for
the same mode, but for different frequency points, then the expansion
functions show some linear dependency. SVD may then be used to find
a minimal set of orthogonal vectors spanning the same space as those
partly linearly dependent modal fields. This set may then be used as
basis functions in place of actual fields.
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Authors’ Reply

Alicia Casanueva and J. Luis García

In response to Mrozowski’s comments on the above paper,1 we
agree with the general outline and accept that the numerical technique
suggested by Mrozowski is more orthodox than the one we used in the
above paper given the current state of mathematical research. We rec-
ognized the innovative nature of the approach in [1]; however, the same
approach was not developed more fully until [2], which, as Mrozowski
states, was published four years later. The above paper was also pub-
lished in 2002, but was actually commenced in 1998 and first submitted
at the start of 1999, long before the publication of [2]. Furthermore, far
from seeking to discover the most convenient mathematical procedure
possible, we tested the algorithm on various different planar structures
in order to prove the large potential of the approach in the most diverse
situations, e.g., in the analysis of microstrip, suspended microstrip, and
finline, all with differing dielectric constants. The general aim, there-
fore, was to see whether the simplicity of the algorithm was also valid
for a wider and more complex range of solutions, which would thus
prove that the new approach could be an efficient procedure when the
most convenient expansion functions are used.

After reviewing Mrozowski’s comments, we have gone back to
our original calculations and reworked them in accordance with Mro-
zowski’s suggestions. Some of the results of these new calculations
are shown here and they prove that the original results presented in
the above paper are in keeping with the new results obtained via the
approximation formulated by Mrozowski and the application of the
QZ algorithm, as shown in Fig. 1.

The latter mathematical procedure is undoubtedly far more appro-
priate. Nevertheless, the fact that the algorithm is also valid with the
mathematical procedure used in the above paper clearly shows that it
is the basic functions used in the approach that give it its real efficiency,
rather than the mathematical procedure applied.

As far as the new results shown here are concerned, the following
should be noted. Fig. 2 and its inset present�2 as a function of fre-
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Fig. 1. Accurate and approximate data of propagation constant� versus
frequency in a shield microstrip line. Parameters:h = 3 mm, h = h =
0:3175 mm,w = 0:56 mm,A = 5 mm, " = " = 10, � = � = 0.
Basic functions:(� = 0:532991729E-01; 0:0;Freq = 1:00 GHz),
(� = 0:305018254E-001; �3:231;Freq = 17:0 GHz).

Fig. 2. Comparison of� of the first three modes in a shield microstrip
line between accurate and approximate data. Parameters:h = 5:751 mm,
h = h = 0:3175 mm,w = 0:953 mm,A = 9:52 mm," = " = 10,
� = � = 0. Basic functions:(� = 2:8872E-001; 0:0; Freq =
10:0 GHz), (� = 0:0; 2:4841E-001; Freq = 10:0 GHz),
(� = 0:0; 5:5224E-001; Freq = 10:0 GHz).

quency calculated as approximate (shown by a dashed curve) and as
accurate (shown as a continuous curve). In Fig. 2, different modes have
been used at the same frequency. In Fig. 3, on the other hand, a TEM
mode and modes near the cutoff frequency have been applied. We can
observe that the approximate results in Fig. 3 are closer to the accurate
results than in Fig. 2, which is due to the fact that, for microstrip struc-
tures, in general, the use of a TEM mode and modes near the cutoff
frequency is more efficient. All the above is in complete agreement
with the theory and data presented in the above paper.

Moreover, we would like to conclude by stressing that Mrozowski’s
proposed algorithms are valid for planar transmission lines when both
the spectral-domain approach and the singular-value-decomposition
technique have been implemented to obtain an accurate set of basic
functions.
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